

PS2 Controller

Summary
Core Reference
CR0109 (v1.3) May 26, 2005

This document provides detailed reference information with
respect to the PS/2 Controller peripheral devices.

The PS/2 Controller provides a bidirectional, synchronous serial interface between a host
microcontroller and a PS/2 device (keyboard or mouse).
Important Notice: Supply of this soft core under the terms and conditions of the Altium End-User
License Agreement does not convey nor imply any patent rights to the supplied technologies. Users
are cautioned that a license may be required for any use covered by such patent rights.

Features
•

•

•

•
•

IBM PS/2 device compatible (keyboard or mouse)

Bidirectional transmission (synchronous and serial).

Hardware parity (odd) check on all data received from PS/2 device

Hardware parity (odd) generation on all data sent to PS/2 device
Wishbone-compliant (PS2_W only)

Available devices
Both Wishbone and non-Wishbone versions of the Controller are available – the PS2_W and the PS2
respectively. These devices can be found in the FPGA Peripherals integrated library (\Program
Files\Altium2004\Library\Fpga\FPGA Peripherals.IntLib).

CR0109 (v1.3) May 26, 2005 1

PS2 Controller

PS2_W – Wishbone-compliant version

Functional Description
Symbol

Figure 1. PS/2 Controller Symbol – Wishbone version (PS2_W)

Pin description
Table 1. PS2_W pin description

Name Type Polarity/
Bus size

Description

Control Signals

CLK_I I Rise External system clock

CLK_1MHZ1 I Rise Reference clock for the generation of timing constants specified
within the PS/2 timing specification standard

RST_I I High External system reset

Host Microcontroller Interface Signals

STB_I I High Strobe signal. When asserted, indicates the start of a valid
Wishbone data transfer cycle

CYC_I I High Cycle signal. When asserted, indicates the start of a valid
Wishbone cycle

1 This clock input signal should ideally be 1MHz. It should, at any rate, be faster than the connected PS/2 device. If
this clock signal is too low, the Controller may remain waiting too long for data that might not come from the PS/2
device. If it is too high, the Controller may not wait long enough to correctly receive the data sent from the PS/2
device.

2 CR0109 (v1.3) May 26, 2005

PS2 Controller

Name Type Polarity/
Bus size

Description

ACK_O O High Standard Wishbone device acknowledgement signal. When this
signal goes high, the Controller (Wishbone Slave) has finished
execution of the requested action and the current bus cycle is
terminated

ADR_I I Level Address bus, used to select an internal register of the device for
writing to/reading from:

0 = Wishbone Control register (WCREG)

1 = Wishbone Data register (WDREG)

DAT_O O 8 Data to be sent to host microcontroller

DAT_I I 8 Data received from host microcontroller

WE_I I Level Write enable signal. Used to indicate whether the current local
bus cycle is a Read or Write cycle:

0 = Read

1 = Write

INT_O O High Interrupt signal. Used to alert the CPU to the presence of data
received from the connected PS/2 device. This signal is
asserted for at least 13 periods of CLK_I when 1 byte of data
has been received from the PS/2 device. (Note: INT_O will not
be asserted if the parity of the byte received is not correct)

PS/2 Interface Signals

PS2CLKTRI O Low Tri-state enable signal for the PS2CLK bidirectional buffer

PS2CLKO O - PS2 clock output

PS2CLKI I - PS2 clock input

PS2DATATRI Low Tri-state enable signal for the PS2DATA bidirectional buffer

PS2DATAO O - PS2 data output (data from the PS2 Controller to the PS/2
device)

PS2DATAI I - PS2 data input (data from the PS/2 device to the PS2
Controller)

Note: To simplify using the bidirectional PSDATA and PSCLK buses, the schematic symbol includes a
bus pin for each direction, allowing them to be wired independently. Configuration of bus direction is
performed under program control.

CR0109 (v1.3) May 26, 2005 3

PS2 Controller

Hardware Description
Block Diagram

Wishbone
Interface

DAT_I[7..0]
 Transmit

DAT_O[7..0]
PS2CLKO ADR_I Latch transmit

data
Generate
Parity bit

Transmit Serial
Data WCREG CYC_I PS2DATO

STB_I
Wait for

acknowledge
WE_I

 WDREG
ACK_O

busy

PS2CLKI

Receive
Generate
Interrupt

Perform Parity
check

8-bit Shift
Register

PS2DATI Synchronize
receive data INT_O

Figure 2. PS2_W Controller block diagram

Internal Wishbone Registers
All Wishbone communication is carried out through two dedicated registers – the Wishbone Control
register (WCREG) and Wishbone Data register (WDREG) respectively.

Wishbone Control register (WCREG)
The Wishbone Control register holds the current state of the Controller and is used to control
transmission of data to the PS/2 slave device.

Table 2. The WCREG register

MSB LSB

X X X X X X STB BUSY

Table 3. The WCREG register bit functions

Bit Symbol Function

WCREG.7 X Not used. Read as '0'

WCREG.6 X Not used. Read as '0'

WCREG.5 X Not used. Read as '0'

WCREG.4 X Not used. Read as '0'

4 CR0109 (v1.3) May 26, 2005

PS2 Controller

Bit Symbol Function

WCREG.3 X Not used. Read as '0'

WCREG.2 X Not used. Read as '0'

WCREG.1 STB Strobe flag. This bit is set by the CPU to initiate transmission to the
connected PS/2 slave device. This bit is automatically cleared by the
Controller when it starts transmission

WCREG.0 BUSY Busy flag. This bit is set when the PS2_W Controller performs the
requested task

Wishbone Data register (WDREG)
When written to, the Wishbone Data register writes data to be transmitted to the slave PS/2 device, into
the Controller’s transmit buffer.

When read, the register returns whatever data is currently in the Controller’s receive buffer. When
INT_O is asserted, reading the register returns the byte of data received from the slave PS/2 device.

Table 4. The WDREG register

MSB LSB

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Table 5. The WDREG register bits description

Bit Symbol Function

WDREG.7 DB7 Data bit 7

WDREG.6 DB6 Data bit 6

WDREG.5 DB5 Data bit 5

WDREG.4 DB4 Data bit 4

WDREG.3 DB3 Data bit 3

WDREG.2 DB2 Data bit 2

WDREG.1 DB1 Data bit 1

WDREG.0 DB0 Data bit 0

CR0109 (v1.3) May 26, 2005 5

PS2 Controller

Register reset values
Table 6

Table 6. Internal Wishbone register reset values

 shows the values contained in each of the PS2_W’s internal Wishbone registers after an
external system reset has been received on the RST_I input.

Register Value after reset

WCREG 00h

WDREG 00h

CPU to PS/2 device - communications overview
The PS2_W Controller provides the Wishbone interface between a microcontroller (host) on the one
side and a PS/2 device (keyboard or mouse) on the other. The host microcontroller sends data to and
receives data from the PS2_W Controller, through the Controller’s internal Wishbone Data register
(WDREG).
Note: Switching speeds vary depending on the physical FPGA device used. High speed devices may
exhibit undesirable noise effects on any NanoBoard port plug-in connections that are unterminated.

Transmission from CPU to PS/2 device
The CPU sends data to the PS2_W Controller through the Wishbone Data register (WDREG). Once a
byte of data is written to this register, the Controller puts it into its transmit buffer.

The PS2_W Controller stores this data until the STB flag (WCREG.1) is set in the Wishbone Control
register.

Once the STB flag is set, the PS2_W Controller prepares a single byte of data for transmission. The
byte of data is organized into a frame. The Controller also generates a parity bit (odd parity) for the
frame — necessary for error checking when a frame of data is received by the PS/2 device.

The frame of data is then transmitted to the connected PS/2 device, over the bidirectional PS2DATA
bus (in the schematic design, this data leaves the PS2_W Controller on the PS2DATAO pin). It should
be noted that only a single byte of data can be sent at any one time. To send an additional byte of data,
the host CPU should read the state of the BUSY flag (WCREG.0) and once it is cleared, write a new
byte of data into the Wishbone Data register and set the STB flag in the Wishbone Control register.

See the section ' ' for full details of the transmission
protocol from PS2_W Controller to PS/2 slave device.

Transmission from Controller to PS/2 device

For detailed information with respect to accessing the internal Wishbone registers for write/read
operations, see the sections Writing to the Internal Wishbone Registers and Reading from the Internal
Wishbone Registers, respectively.

Transmission from PS/2 device to CPU
Data sent from the PS/2 device over the PS2DATA bus arrives at the PS2_W Controller on the
PS2DATAI pin. The received data, previously clocked in on the falling edge of the PS2CLK signal, is
then synchronized with the clock signal internal to the FPGA device. See the section 'Transmission

6 CR0109 (v1.3) May 26, 2005

PS2 Controller

from PS/2 device to Controller' for full details of the transmission protocol from PS/2 slave device to
PS2_W Controller.

Each received data frame is shifted out through the Receive Shift Register. Parity checking is then
performed to ensure the integrity of the data.

If the parity check reveals no errors, the PS2_W Controller then generates an interrupt signal to the
CPU – appearing as a high on the INT_O output pin. INT_O stays high for at least 13 periods of the
external CLK_I signal, in order for the CPU to 'see' the interrupt. This alerts the CPU to the fact that a
byte of data has been received from the PS/2 device.

The CPU then reads the data from the PS2_W Controller’s internal Wishbone Data register (WDREG).

The CPU can interrogate the state of the PS2_W Controller at any time by reading the state of the
BUSY flag (WCREG.0) in the Controller’s internal Wishbone Control register. When this bit is high, the
Controller is either transmitting data to, or receiving data from, the PS/2 device.

For detailed information with respect to accessing the internal Wishbone registers for write/read
operations, see the sections Writing to the Internal Wishbone Registers and Reading from the Internal
Wishbone Registers, respectively

PS2 Protocol
The PS2_W Controller implements a bidirectional protocol for synchronous serial transmission
between the host and the PS/2 device (keyboard or mouse).

The PS/2 device sends information to the Controller, for example when a key is pressed on the
keyboard, or when the mouse has moved position.

The Controller sends information to the PS/2 device when a specific command — sent from the
microcontroller — needs to be executed. When the connected PS/2 device is a keyboard, such a
command could be to change the state of an LED (Num Lock, Caps Lock, Scroll Lock).

The clock signal for the Controller-Device interface (PS2CLK) is always generated by the PS/2 device,
but is not continuous. Total control over transmission is, however, ultimately in the hands of the
microcontroller. The table below illustrates the various states that can be entered, with respect to the
Controller-Device interface.

Table 7. PS2 Controller Transmission states

State PS2DATA PS2CLK Note

Idle High High -

Inhibit Transmission High Low

Host Send Request Low High

Here, the Controller is asking the PS/2
device to generate the clock, in order for
the transmitter to transmit serial data out
of the shift register.

Note that the Host Send Request state can only be entered by passing through the Inhibit
Transmission state.

CR0109 (v1.3) May 26, 2005 7

PS2 Controller

Transmission from PS/2 device to Controller
The PS/2 device is free to send data to the Controller when the Controller is in the Idle state. This
means that both the PS2CLK and PS2DATA lines are high. The PS/2 device must then wait for half a
PS2CLK period before it can start its transmission.

The transmitted data is sent in frames, with each frame carrying a single byte of data. The number of
frames sent depends on the number of bytes of data constituting the message to be sent. For example,
most scan codes (the codes that represent keys) for a keyboard are a single byte in length, but some
can be longer. When sending information to tell the host microcontroller that a key has been released,
an extra byte of data needs to be sent. It should be noted that only a single byte of data (therefore a
single frame) can be sent to the Controller at any one time. To send additional bytes of data (further
frames) the PS/2 device must wait until the Controller returns to the Idle state, before starting each
additional transmission.

When sending data from the device to the Controller, the PS2 frame consists of 11 fields. The order of
these fields is shown in . Table 8

Table 8. PS2 Frame (from PS/2 device to Controller)

Start Data
0

Data
1

Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Parity Stop

Start - indicates the start of a transmitted frame. This is always a '0'.

Data0-Data7 - the actual data bits. The least significant bit (Data0) is always sent first.

Parity - used for error detection. Odd parity is used. Therefore, if the number of '1's in
Data0-7 is even, the Parity bit is set (1). If the number of '1's is odd, the Parity bit is
cleared (0).

Stop - indicates the end of the frame currently being transmitted. This is always a '1'

Figure 7 shows the timing for this frame transmission. The PS2_W Controller reads each bit in the
frame on the falling edge of the clock signal.

idle

PS2CLK
idle

Figure 3. Transmission of data from PS/2 device to Controller

The host microcontroller, as previously mentioned, always has full control over the transmission of data
to and from the PS/2 device:

•

•

By monitoring the BUSY flag (WCREG.0) in the Wishbone Control register, it knows the current
status of the PS2_W Controller – whether it is sending data to or receiving data from the connected
PS/2 device

The INT_O signal alerts it to any data that has been received by the PS2_W Controller and is
therefore ready to be read.

D1 Stop D0PS2DATA P D2 D3 D4 D5 D6 D7Start

8 CR0109 (v1.3) May 26, 2005

PS2 Controller

The host can therefore complete reception of data or start a transmission, whenever it deems is
appropriate to do so.

The transmission of data from the PS/2 device to the Controller can be inhibited at any time, by the
host setting the STB flag (WCREG.1) in the Wishbone Control register. The PS2_W Controller,
detecting that the host wants to interrupt, takes the PS2CLK line low for at least one clock period.

When such an event arises, the Controller enters the Inhibit Transmission state. The response of the
PS/2 device depends on where in the transmission the inhibit occurs:

•

•

•

•

•

•

before reception of the Start bit – the PS/2 device has not yet begun transmission of the data. The
frame of data will be buffered until the interface re-enters Idle state and the device is free to
commence transmission.

during transmission of a frame (anywhere after the first high-to-low transition of PS2CLK and
before the last high-to-low transition) – the PS/2 device aborts transmission and prepares to
retransmit the entire message again. The message could be a single byte scan code, in which
case the same byte will be retransmitted when the interface re-enters Idle state. If the message
being transmitted was composed of several bytes (for example an extended key on a keyboard
has been pressed or released), all bytes would be retransmitted, irrespective of how many bytes of
the message had already been transmitted.

After reception of the Stop bit – the PS/2 device has finished transmission of the data (constituent
frames) and so retransmission is not necessary. Any new data will be buffered until the interface is
in Idle state.

For a PS/2 keyboard, up to 16 bytes of key strokes can be buffered for transmission to the Controller.
For a PS/2 mouse, only the current movement packet is stored for transmission.

Transmission from Controller to PS/2 device
For the Host microcontroller to send a command to the PS/2 device via the PS2_W Controller, the STB
flag (WCREG.1) in the Wishbone Control register must be set

To effect transmission, the PS2_W Controller must then enter the Host Send Request state. This is
achieved by taking the following actions:

the PS2CLK line is first taken low for at least one clock period (entering Inhibit Transmission state)

the PS2DATA line is then taken low (providing the Start bit of the frame to be transmitted)

the PS2CLK line is then released (still holding PS2DATA low).

The PS/2 device regularly checks the data and clock lines for this state and when detected, starts to
generate the PS2CLK signal.

When sending data from the Controller to the PS/2 device, the PS2 frame consists of 10 fields. The
order of these fields is shown in T . able 9

Table 9. PS2 Frame (from Controller to PS/2 device)

Start Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Parity

Start - indicates the start of a transmitted frame. This is always a '0'.

Data0-Data7 - the actual data bits. The least significant bit (Data0) is always sent first.

CR0109 (v1.3) May 26, 2005 9

PS2 Controller

Parity - used for error detection. Odd parity is used. Therefore, if the number of '1's in
Data0-7 is even, the Parity bit is set (1). If the number of '1's is odd, the Parity bit is
cleared (0).

Figure 8 shows the timing for this frame transmission. The PS/2 device reads each bit in the frame on
the falling edge of the clock signal.

idle

PS2CLK

Figure 4. Transmission of data from Controller to PS/2 device

After transmission of the Parity bit, the PS2DATA line is released back to its idle state. The PS/2 device
monitors this line and when it has detected no change from the idle state for at least one clock period, it
takes the line low again for a single clock period. This tells the Controller that the data has been fully
received by the device, i.e. an acknowledgement. Both PS2CLK and PS2DATA lines are released to
their idle state. The Controller can initiate another transmission request at this point.

If the PS/2 device does not detect the release of the PSDATA line after the reception of the parity bit, it
will continue to provide the PS2CLK signal. Once the PSDATA line is finally released, the device will
pull it low and send the command to ‘retransmit byte’. On reception of this byte, the PS2_W Controller
should then retransmit the previous byte.

The Controller can inhibit transmission of data at any time before the PS/2 device sends the ACK
signal, by taking the PS2CLK line low for at least one clock period.

Writing to the Internal Wishbone Registers
The host microcontroller can write to either of the PS2_W’s internal Wishbone registers. Selection of a
register – either WCREG or WDREG – is achieved by supplying the unique, binary ID address code of
the register. This code is sent to the device and appears at the ADR_I input.

Table 10

Table 10. PS2_W Internal Wishbone register unique address IDs.

 shows the unique address IDs associated with the registers for the PS2_W.

Register Unique Register Address ID

WCREG 0

WDREG 1

An internal Wishbone register of the PS2_W device can be written to in the following circumstances. In
each case, the write operation occurs on the rising edge of the CLK_I input.

System Reset
After reception of an external system reset (RST_I goes High), both internal Wishbone registers are
loaded with the reset value 00h.

ACK D0PS2DATA
idle

D1 D2 D3 D4 D5 D6 D7 P

PS/2 device Host

10 CR0109 (v1.3) May 26, 2005

PS2 Controller

Host Microcontroller Write
Data is written from the host microcontroller to an internal Wishbone register, in accordance with the
standard Wishbone data transfer handshaking protocol. This data transfer cycle can be summarized as
follows:

•

•

•

•

•

•

•

•

The host presents the unique address ID for the register to be written on its ADR_O output and a
valid byte of data on its DAT_O output. It then asserts its WE_O signal, to specify a Write cycle

The PS2_W receives the address ID on its ADR_I input and prepares to receive data into the
selected register

The host asserts its STB_O and CYC_O outputs, indicating that the transfer is to begin. The
PS2_W, which monitors its STB_I and CYC_I inputs on each rising edge of the CLK_I signal, reacts
to this assertion by latching the byte of data appearing at its DAT_I input into the target register and
asserting its ACK_O signal – to indicate to the host that the data has been received

The host, which monitors its ACK_I input on each rising edge of the CLK_I signal, responds by
negating the STB_O and CYC_O signals. At the same time, the PS2_W negates the ACK_O signal
and the data transfer cycle is naturally terminated.

Reading from the Internal Wishbone Registers
Data is read from an internal Wishbone register in accordance with the standard Wishbone data
transfer handshaking protocol. This data transfer cycle can be summarized as follows:

The host presents the unique address ID for the register to be read on its ADR_O output. It then
negates its WE_O signal to specify a Read cycle

The PS2_W receives the address ID on its ADR_I input and prepares to transmit data from the
selected register

The host asserts its STB_O and CYC_O outputs, indicating that the transfer is to begin. The
PS2_W, which monitors its STB_I and CYC_I inputs on each rising edge of the CLK_I signal, reacts
to this assertion by presenting a valid byte of data at its DAT_O output and asserting its ACK_O
signal – to indicate to the host that valid data is present

The host, which monitors its ACK_I input on each rising edge of the CLK_I signal, responds by
latching the byte of data appearing at its DAT_I input and negating the STB_O and CYC_O signals.
At the same time, the PS2_W negates the ACK_O signal and the data transfer cycle is naturally
terminated.

CR0109 (v1.3) May 26, 2005 11

PS2 Controller

PS2 – Non-Wishbone version

Functional Description
Symbol

Figure 5. PS/2 Controller Symbol – non-Wishbone version (PS2)

Pin description
Table 11. PS2 pin description

Name Typ
e

Polarity/
Bus size

Description

Control Signals

CLK I Rising External (system) clock

CLK_1MHZ2 I Rising Reference clock for the generation of timing constants specified
within the PS/2 timing specification standard.

RST I High External (system) reset

Host Microcontroller Interface Signals

DATAO O 8 Output data bus. Used to transfer a byte of data from the PS2
Controller to the host CPU. This data has been received from the
PS/2 device.

DATAI I 8 Input data bus. Used to transfer a byte of data from the host CPU
to the PS2 Controller. This data is to be sent to the PS/2 device.

2 This clock input signal should ideally be 1MHz. It should, at any rate, be faster than the connected PS/2 device. If
this clock signal is too low, the Controller may remain waiting too long for data that might not come from the PS/2
device. If it is too high, the Controller may not wait long enough to correctly receive the data sent from the PS/2
device.

12 CR0109 (v1.3) May 26, 2005

PS2 Controller

Name Typ
e

Polarity/
Bus size

Description

BUSY O High Active when the PS2 Controller is transmitting data to, or
receiving data from, the PS/2 device

STROBE I High This signal is used to initiate a transmission of data from the host
CPU to the connected PS/2 device. When asserted, the data on
DATAI is sent to the PS/2 device. This signal must be asserted
for a minimum of one complete period of CLK.

INT O High Interrupt signal. Used to alert the CPU to the presence of data
received from the connected PS/2 device. This signal is asserted
for at least 13 periods of CLK when 1 byte of data has been
received from the PS/2 device. (Note: INT will not be asserted if
the parity of the byte received is not correct)

PS/2 Interface Signals

PS2CLKTRI O Low Tri-state enable signal for the PS2CLK bidirectional buffer

PS2CLKO O - PS2 clock output

PS2CLKI I - PS2 clock input

PS2DATATRI Low Tri-state enable signal for the PS2DATA bidirectional buffer

PS2DATAO O - PS2 data output (data from the PS2 Controller to the PS/2
device)

PS2DATAI I - PS2 data input (data from the PS/2 device to the PS2 Controller)

STROBE I High This signal is used to initiate a transmission of data from the host
CPU to the connected PS/2 device. When asserted, the data on
DATAI is sent to the PS/2 device. This signal must be asserted
for a minimum of one complete period of CLK.

Note: To simplify using the bidirectional PSDATA and PSCLK buses, the schematic symbol includes a
bus pin for each direction, allowing them to be wired independently. Configuration of bus direction is
performed under program control.

CR0109 (v1.3) May 26, 2005 13

PS2 Controller

Hardware Description
Block Diagram

Transmit

 Latch transmit
data

Generate
Parity bit

Transmit
Serial Data

DATAI
PS2CLKO

STROBE
PS2DATO

Wait for
acknowledge

BUSY

Receive
PS2CLKI DATAO

Generate
Interrupt

Perform Parity
check

8-bit Shift
Register

Synchronize
receive data PS2DATI INT

Figure 6. PS2 Controller block diagram

Figure 6

CPU to PS/2 device - communications overview
The PS2 Controller provides the interface between a microcontroller (host) on the one side and a PS/2
device (keyboard or mouse) on the other. The host microcontroller sends data to and receives data
from the PS2 Controller, on the DATAI and DATAO buses respectively.

The operational flow can be seen in and is summarized in the following sections.
Note: Switching speeds vary depending on the physical FPGA device used. High speed devices may
exhibit undesirable noise effects on any NanoBoard port plug-in connections that are unterminated.

Transmission from CPU to PS/2 device
The CPU sends data to the PS2 Controller on the DATAI bus.

The PS2 Controller stores this data until an active STROBE signal is received from the CPU. The
STROBE signal must be high for at least one period of the external system clock signal (on the CLK
input).

After receiving a valid STROBE signal, the PS2 Controller prepares a single byte of data for
transmission. The byte of data is organized into a frame. The Controller also generates a parity bit (odd
parity) for the frame — necessary for error checking when a frame of data is received by the PS/2
device.

The frame of data is then transmitted to the connected PS/2 device, over the bidirectional PS2DATA
bus (in the schematic design, this data leaves the PS2 Controller on the PS2DATAO pin). It should be
noted that only a single byte of data can be sent at any one time. To send an additional byte of data,

14 CR0109 (v1.3) May 26, 2005

PS2 Controller

another active STROBE signal must be issued by the host. See the section '
' for full details of the transmission protocol from PS2 Controller to PS/2

device.

Transmission from
Controller to PS/2 device

Transmission from PS/2 device to CPU
Data sent from the PS/2 device over the PS2DATA bus arrives at the PS2 Controller on the PS2DATAI
pin. The received data, previously clocked in on the falling edge of the PS2CLK signal, is then
synchronized with the clock signal internal to the FPGA device. See the section '

' for full details of the transmission protocol from PS/2 device to PS2
Controller.

Transmission from
PS/2 device to Controller

Each received data frame is shifted out through the Receive Shift Register. Parity checking is then
performed to ensure the integrity of the data.

If the parity check reveals no errors, the PS2 Controller then generates an interrupt signal to the CPU –
appearing as a high on the INT output pin. INT stays high for at least 13 periods of the external CLK
signal, in order for the CPU to 'see' the interrupt. This alerts the CPU to the fact that a byte of data has
been received from the PS/2 device.

The CPU then reads the data from the PS2 Controller, on the DATAO bus. There is no handshaking
between the CPU and PS2 Controller when reading a byte of data. The CPU is running at a far greater
speed and so there is no possibility of it missing a byte of data to be read.

The CPU can interrogate the state of the PS2 Controller at any time by reading the state of the
Controller’s BUSY output. When this output is high, the Controller is either transmitting data to, or
receiving data from, the PS/2 device.

CR0109 (v1.3) May 26, 2005 15

PS2 Controller

PS2 Protocol
The PS2 Controller implements a bidirectional protocol for synchronous serial transmission between
the host and the PS/2 device (keyboard or mouse).

The PS/2 device sends information to the Controller, for example when a key is pressed on the
keyboard, or when the mouse has moved position.

The Controller sends information to the PS/2 device when a specific command — sent from the
microcontroller — needs to be executed. When the connected PS/2 device is a keyboard, such a
command could be to change the state of an LED (Num Lock, Caps Lock, Scroll Lock).

The clock signal for the Controller-Device interface (PS2CLK) is always generated by the PS/2 device,
but is not continuous. Total control over transmission is, however, ultimately in the hands of the
microcontroller. The table below illustrates the various states that can be entered, with respect to the
Controller-Device interface.

Table 12. PS2 Controller Transmission states

State PS2DATA PS2CLK Note

Idle High High -

Inhibit Transmission High Low

Host Send Request Low High

Here, the Controller is asking the PS/2
device to generate the clock, in order for
the transmitter to transmit serial data out
of the shift register.

Note that the Host Send Request state can only be entered by passing through the Inhibit
Transmission state.

Transmission from PS/2 device to Controller
The PS/2 device is free to send data to the Controller when the Controller is in the Idle state. This
means that both the PS2CLK and PS2DATA lines are high. The PS/2 device must then wait for half a
PS2CLK period before it can start its transmission.

The transmitted data is sent in frames, with each frame carrying a single byte of data. The number of
frames sent depends on the number of bytes of data constituting the message to be sent. For example,
most scan codes (the codes that represent keys) for a keyboard are a single byte in length, but some
can be longer. When sending information to tell the host microcontroller that a key has been released,
an extra byte of data needs to be sent. It should be noted that only a single byte of data (therefore a
single frame) can be sent to the Controller at any one time. To send additional bytes of data (further
frames) the PS/2 device must wait until the Controller returns to the Idle state, before starting each
additional transmission.

When sending data from the device to the Controller, the PS2 frame consists of 11 fields. The order of
these fields is shown in . Table 13

16 CR0109 (v1.3) May 26, 2005

PS2 Controller

Table 13. PS2 Frame (from PS/2 device to Controller)

Start Data
0

Data
1

Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Parity Stop

Start - indicates the start of a transmitted frame. This is always a '0'.

Data0-Data7 - the actual data bits. The least significant bit (Data0) is always sent first.

Parity - used for error detection. Odd parity is used. Therefore, if the number of '1's in
Data0-7 is even, the Parity bit is set (1). If the number of '1's is odd, the Parity bit is
cleared (0).

Stop - indicates the end of the frame currently being transmitted. This is always a '1'

Figure 7

Figure 7. Transmission of data from PS/2 device to Controller

 shows the timing for this frame transmission. The PS2 Controller reads each bit in the frame
on the falling edge of the clock signal.

idle

PS2CLK
idle

The host microcontroller, as previously mentioned, always has full control over the transmission of data
to and from the PS/2 device:

•

•

•

•

By monitoring the BUSY output, it knows the current status of the PS2 Controller – whether it is
sending data to or receiving data from the connected PS/2 device

The INT signal alerts it to any data that has been received by the PS2 Controller and is therefore
ready to be read.

The host can therefore complete reception of data or start a transmission, whenever it deems is
appropriate to do so.

The transmission of data from the PS/2 device to the Controller can be inhibited at any time, by the
host taking the STROBE signal high. The PS2 Controller, detecting that the host wants to interrupt,
takes the PS2CLK line low for at least one clock period.

When such an event arises, the Controller enters the Inhibit Transmission state. The response of the
PS/2 device depends on where in the transmission the inhibit occurs:

before reception of the Start bit – the PS/2 device has not yet begun transmission of the data. The
frame of data will be buffered until the interface re-enters Idle state and the device is free to
commence transmission.

during transmission of a frame (anywhere after the first high-to-low transition of PS2CLK and
before the last high-to-low transition) – the PS/2 device aborts transmission and prepares to
retransmit the entire message again. The message could be a single byte scan code, in which
case the same byte will be retransmitted when the interface re-enters Idle state. If the message
being transmitted was composed of several bytes (for example an extended key on a keyboard

D1 Stop D0PS2DATA P D2 D3 D4 D5 D6 D7Start

CR0109 (v1.3) May 26, 2005 17

PS2 Controller

has been pressed or released), all bytes would be retransmitted, irrespective of how many bytes of
the message had already been transmitted.

•

•

•

•

After reception of the Stop bit – the PS/2 device has finished transmission of the data (constituent
frames) and so retransmission is not necessary. Any new data will be buffered until the interface is
in Idle state.

For a PS/2 keyboard, up to 16 bytes of key strokes can be buffered for transmission to the Controller.
For a PS/2 mouse, only the current movement packet is stored for transmission.

Transmission from Controller to PS/2 device
For the Host microcontroller to send a command to the PS/2 device via the PS2 Controller, the Strobe
pin must be taken high for at least one period of the external system clock signal (on the CLK input).
This enables the PS2 Controller to take data on the DATAI line for transmission.

To effect transmission, the PS2 Controller must then enter the Host Send Request state. This is
achieved by taking the following actions:

the PS2CLK line is first taken low for at least one clock period (entering Inhibit Transmission state)

the PS2DATA line is then taken low (providing the Start bit of the frame to be transmitted)

the PS2CLK line is then released (still holding PS2DATA low).

The PS/2 device regularly checks the data and clock lines for this state and when detected, starts to
generate the PS2CLK signal.

When sending data from the Controller to the PS/2 device, the PS2 frame consists of 10 fields. The
order of these fields is shown in . Table 14

Table 14. PS2 Frame (from Controller to PS/2 device)

Start Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Parity

Start - indicates the start of a transmitted frame. This is always a '0'.

Data0-Data7 - the actual data bits. The least significant bit (Data0) is always sent first.

Parity - used for error detection. Odd parity is used. Therefore, if the number of '1's in
Data0-7 is even, the Parity bit is set (1). If the number of '1's is odd, the Parity bit is
cleared (0).

Figure 8

Figure 8. Transmission of data from Controller to PS/2 device

 shows the timing for this frame transmission. The PS/2 device reads each bit in the frame on
the falling edge of the clock signal.

idle

PS2CLK

ACK D0PS2DATA
idle

D1 D2 D3 D4 D5 D6 D7 P

PS/2 device Host

18 CR0109 (v1.3) May 26, 2005

PS2 Controller

After transmission of the Parity bit, the PS2DATA line is released back to its idle state. The PS/2 device
monitors this line and when it has detected no change from the idle state for at least one clock period, it
takes the line low again for a single clock period. This tells the Controller that the data has been fully
received by the device, i.e. an acknowledgement. Both PS2CLK and PS2DATA lines are released to
their idle state. The Controller can initiate another transmission request at this point.

If the PS/2 device does not detect the release of the PSDATA line after the reception of the parity bit, it
will continue to provide the PS2CLK signal. Once the PSDATA line is finally released, the device will
pull it low and send the command to ‘retransmit byte’. On reception of this byte, the PS2 Controller
should then retransmit the previous byte.

The Controller can inhibit transmission of data at any time before the PS/2 device sends the ACK
signal, by taking the PS2CLK line low for at least one clock period.

CR0109 (v1.3) May 26, 2005 19

PS2 Controller

Commands

Commands sent from a Host Microcontroller
Table 15

Table 15. Commands sent from host to PS/2 keyboard

 and list some of the common commands that can be sent from a host
microcontroller to a connected PS/2 keyboard or PS/2 mouse respectively. The commands are listed in
terms of their hexadecimal codes. Note that all of the commands themselves are a single byte in
length, but many of the commands require an additional byte of data to be sent by the host when
determining specific options.

Table 16

Code Description and Keyboard Action

EDh This command is used to turn the keyboard's LED indicators ON or OFF. The command
tells the keyboard that the host CPU wishes to change the status of one or more of the
LEDs. The keyboard sends an acknowledgement (response code FAh) and then waits for
another byte of data from the host, that specifies the state settings for the LEDs as follows:

Bit0 – State of Scroll Lock LED

Bit1 – State of Num Lock LED

Bit2 – State of Caps Lock LED

Bit3-7 – Not Used

For each indicator, if the corresponding bit is 1, the LED is turned ON. If the bit is 0, the LED
is turned OFF.

EEh This is the echo command. Upon receipt, the keyboard transmits the echo response code
(EEh).

F0h This command is used to select the scan code set to be used for the keyboard. Every key
on the keyboard has a scan code associated with it and it is this code that is sent to the host
CPU when the key is pressed. The keyboard sends an acknowledgement (response code
FAh) and then waits for another byte of data from the host, that specifies the particular scan
code set to be used, as follows:

01h – select scan code set 1

02h – select scan code set 2

03h – select scan code set 3.

If the byte 00h is sent, the keyboard responds by sending the code for the current scan set
that is in use.

F2h This command is used to read the keyboard ID. Upon receipt, the keyboard responds with
the acknowledge response code (FAh), followed by two bytes that constitute the keyboard’s
ID – 83h and ABh.

F3h This command is used to set the auto-repeat rate. This is the rate at which the scan code
for a depressed key is sent when that key has been held depressed for a length of time
exceeding a specified delay. Upon receipt of the command, the keyboard issues the

20 CR0109 (v1.3) May 26, 2005

PS2 Controller

Code Description and Keyboard Action

acknowledge response code and then waits for another byte of data from the host, that
specifies the auto-repeat rate and also the delay before auto-repeat comes into effect, as
follows:

Bit0-4 – specifies the repeat rate (0000 = 30 times per second; 1111 = 2 times per second)

Bit5-6 – specifies the delay time (00 = 250ms; 11 = 1s)

Bit7 – Not Used.

Upon reception of this second byte from the host, the keyboard responds by sending the
acknowledgement code again.

F4h This command is used to enable the keyboard. Upon receipt of the command, the
keyboard’s output buffer is flushed and keyboard scanning (of the PSDATA and PSCLK
lines) is enabled. The keyboard responds by sending the acknowledgement code (FAh).

F5h This command is used to disable the keyboard. Upon receipt of the command, the keyboard
is reset. The keyboard issues the acknowledgement code (FAh) and then keyboard
scanning (of the PSDATA and PSCLK lines) is disabled. The keyboard remains in this state,
waiting for another command from the host CPU.

FEh This is the resend command and is used when the host requires the keyboard to retransmit
the last byte of data sent. After acknowledging receipt of the command, the keyboard
transmits the previously sent byte of data.

FFh This command is used to reset the keyboard. After acknowledging receipt of the command,
the keyboard is reset and subsequently performs its power-on Basic Assurance Test (BAT).
Depending on the result of the test, the keyboard will either send the ‘Passed’ code (AAh) or
the ‘Failed’ code (FCh).

Table 16. Commands sent from host to PS/2 mouse

Code Description and Mouse Action

E6h This command is used to set the current scaling from 2:1 to 1:1. After receipt of the
command, the mouse replies with the acknowledge code (FAh) and changes the scaling to
be 1:1.

E7h This command is used to set the current scaling from 1:1 to 2:1. After receipt of the
command, the mouse replies with the acknowledge code (FAh) and changes the scaling to
be 2:1.

E8h This command is used to set the resolution for the mouse. The mouse sends an
acknowledgement (response code FAh) and then waits for another byte of data from the
host, that specifies the resolution to be used, as follows:

00h – 1 count per millimeter

01h – 2 counts per millimeter

CR0109 (v1.3) May 26, 2005 21

PS2 Controller

Code Description and Mouse Action

02h – 4 counts per millimeter

03h – 8 counts per millimeter

After receipt of this second byte, the mouse sends the acknowledge code again and resets
its movement counters

E9h This command is used to request the current status of the mouse. Upon receipt of the
command, the mouse sends the acknowledge response code (FAh), followed by a three
byte status packet, structured as follows:

Byte1

 Bit0 – State of right mouse button (1=pressed; 0=not pressed)

 Bit1 – State of middle mouse button (1=pressed; 0=not pressed)

 Bit2 – State of left mouse button (1=pressed; 0=not pressed)

 Bit3 – Not Used (set to 0)

 Bit4 – Current scaling in use (1= 2:1; 0= 1:1)

 Bit5 – Data reporting state (1=enabled; 0=disabled)

 Bit6 – Current mode (1= Remote mode; 0= Stream mode)

 Bit7 – Not Used (set to 0)

Byte2 – Current resolution in use

Byte3 – Current sampling rate in use

After sending the status packet, the mouse resets its movement counters.

EAh This command is used to set the mouse in Stream mode. The mouse responds by sending
the acknowledge code (FAh), resetting its movement counters and entering Stream mode.
In this mode, a packet of data is sent every time the mouse detects movement, or when
one of its buttons has changed state. Data is sent to the host, providing that data reporting
is enabled. The frequency of packet transmission is determined by the sampling rate – the
default being 100 samples per second.

EBh This command is used to read sampled data from the mouse whilst it is in Remote mode.
The mouse responds by sending the acknowledge response code (FAh) and then sending
its current packet of movement data. The movement counters are subsequently reset.

ECh This command is used to reset Wrap mode. The mouse responds by sending the
acknowledge code (FAh), resetting its movement counters and entering the mode that it
was in prior to entering Wrap mode (either Stream or Remote).

EEh This command is used to set the mouse in Wrap mode. The mouse responds by sending
the acknowledge code (FAh), resetting its movement counters and entering Wrap mode. In
this mode, the mouse echoes all commands directly back to the host, without additional or
further response. Two exceptions to this are the commands to reset (FFh) and reset Wrap
mode (ECh). In these cases, the mouse responds as per the entries for these commands in
this table.

22 CR0109 (v1.3) May 26, 2005

PS2 Controller

Code Description and Mouse Action

F0h This command is used to set the mouse in Remote mode. The mouse responds by sending
the acknowledge code (FAh), resetting its movement counters and entering Remote mode.
In this mode, the inputs to the mouse (movement and buttons) are still sampled, but no
packets of data are sent to the host.

F2h This command is used to read the mouse ID. Upon receipt, the mouse responds with the
acknowledge response code (FAh), followed by the code that represents its ID and
distinguishes it as a standard PS/2 mouse - 00h. The movement counters are also reset at
this time.

F3h This command is used to set the sampling rate for the mouse (when monitoring its
movement and button inputs). The mouse sends an acknowledgement (response code
FAh) and then waits for another byte of data from the host, that specifies the sampling rate
to be used, as follows:

0Ah – 10 samples per second

14h – 20 samples per second

28h – 40 samples per second

3Ch – 60 samples per second

50h – 80 samples per second

64h – 100 samples per second

C8h – 200 samples per second.

After receipt of this second byte, the mouse sends the acknowledge code again and resets
its movement counters.

F4h This command is used to enable data reporting when the mouse is in Stream mode. Upon
receipt of the command, the mouse sends the acknowledge response code (FAh) and
resets its movement counters. It continues to sample its inputs (movement and buttons)
and packets of data are once again sent to the host.

F5h This command is used to disable data reporting when the mouse is in Stream mode. Upon
receipt of the command, the mouse sends the acknowledge response code (FAh) and
resets its movement counters. It continues to sample its inputs (movement and buttons) but
no packets of data are sent to the host. Stream mode with data reporting disabled is
analogous to the mouse being in Remote mode.

F6h This command is used to load the mouse with default values. Upon receipt of the
command, the mouse sends the acknowledge response code (FAh) and then loads the
following:

•

•

•

•

Sampling Rate – 100 samples per second

Resolution – 4 counts per millimeter

Scaling – 1:1

Data Reporting – Disabled.

CR0109 (v1.3) May 26, 2005 23

PS2 Controller

Code Description and Mouse Action

These default values are also loaded when a reset command is received from the host, or
when the mouse is powered-up (as part of its Basic Assurance Test).

After loading the values, the mouse resets its movement counters and enters Stream
mode.

FEh This is the resend command and is used when the host requires the mouse to retransmit
the last packet of data sent. After acknowledging receipt of the command, the mouse
transmits the previously sent packet of data (e.g. movement data, status information, BAT
code, ID, etc).

FFh This command is used to reset the mouse. After acknowledging receipt of the command,
the mouse is reset and subsequently performs its power-on Basic Assurance Test (BAT).
During this test, default values are loaded for the sampling rate, resolution and scaling, and
data reporting is disabled. Depending on the result of the test, the mouse will either send
the ‘Passed’ code (AAh) or the ‘Failed’ code (FCh).

After the result of the power-on test is sent, the mouse sends its ID (00h). The mouse will
then enter Stream mode. No movement data packets will be sent however, until the host
first sends the command to enable data reporting.

Commands sent from a PS/2 device
Table 17

Table 17. Commands sent from a PS/2 keyboard

 lists the common commands that can be sent from a PS/2 keyboard to a host microcontroller.
The commands are listed in terms of their hexadecimal codes. Note that all of the commands are a
single byte in length, with the exception of the keyboard ID.

Code Description

00h Error or output buffer overflow (scan code sets 2 and 3 only)

83ABh Keyboard ID

AAh Power-on Basic Assurance Test Passed

FCh Power-on Basic Assurance Test Failed

EEh Echo

FAh Acknowledge.

FEh Resend. Upon receipt of this code, the PS2 Controller will retransmit the previous byte

FFh Error or output buffer overflow (scan code set 1 only)

Table 18 lists the common commands that can be sent from a PS/2 mouse to a host microcontroller.
The commands are listed in terms of their hexadecimal codes. Note that all of the commands are a
single byte in length.

24 CR0109 (v1.3) May 26, 2005

PS2 Controller

Table 18. Commands sent from a PS/2 mouse

Code Description

00h Mouse ID

AAh Power-on Basic Assurance Test Passed

FCh Power-on Basic Assurance Test Failed

FAh Acknowledge

FEh Resend. Upon receipt of this code, the PS2 Controller will retransmit the previous byte.

Scan Codes
When a key on the keyboard is pressed, a code is sent to the host CPU. With the aid of ASCII look-up
tables, the host can determine the function of the pressed key. The transmitted code is called a scan
code and is further sub-classed as a 'make' code in the case of a key being pressed.

If a key is held down without being released, the make code for that key will be sent continuously, in
accordance with the defined auto-repeat (typematic) rate. It should be noted that if more than one key
is pressed and held down, typematic mode only applies to the last key pressed.

When a pressed key is released, an additional scan code is sent to the host to let it know that the key
that was pressed has now been released. This additional transmitted code is called a 'break' code.

Most scan codes are a single byte in length, with the exception of some of the extended keys (e.g.
SHIFT, CTRL, PAUSE). The extended keys are recognizable by the E0h prefix to their make codes.

The corresponding break code for a key is composed of the prefix byte F0h, followed by the make code
for that key. Again, extended keys are the exception to this rule with the F0h byte placed after the E0h
byte of the initial make code.

The PAUSE key is an exception to both standard and extended key rulings. Firstly, its make code is 8
bytes in length and starts with E1h and not E0h. Secondly, it has no break code.

The make and break codes for all keys on the PS/2 keyboard constitute the scan code set. There are
three scan code sets defined but only scan code set two is recognized fully and used as the default set
by all modern PS/2 keyboards.

Table 19

Table 19. PS/2 keyboard scan codes (scan code set 2)

 lists all of the keys on a standard PS/2 keyboard, along with their unique scan codes.

Key Scan Code
make (break)

Key Scan Code
make (break)

ESC 76 (F076) K 42 (F042)

F1 05 (F005) L 4B (F04B)

F2 06 (F006) ; 4C (F04C)

F3 04 (F004) ‘ 52 (F052)

CR0109 (v1.3) May 26, 2005 25

PS2 Controller

26 CR0109 (v1.3) May 26, 2005

Key Scan Code
make (break)

Key Scan Code
make (break)

F4 0C (F00C) Enter 5A (F05A)

F5 03 (F003) Shift (Left) 12 (F012)

F6 0B (F00B) Z 1A (F01A)

F7 83 (F083) X 22 (F022)

F8 0A (F00A) C 21 (F021)

F9 01 (F001) V 2A (F02A)

F10 09 (F009) B 32 (F032)

F11 78 (F078) N 31 (F031)

F12 07 (F007) M 3A (F03A)

Prt Scr E012E07C (E0F07CE0F012) , 41 (F041)

Scroll Lock 7E (F07E) . 49 (F049)

Pause/Break E11477E1F014E077 (None) / 4A (F04A)

` 0E (F00E) Shift (Right) 59 (F059)

1 16 (F016) Ctrl (left) 14 (F014)

2 1E (F01E) Windows (left) E01F (E0F01F)

3 26 (F026) Alt (left) 11 (F011)

4 25 (F025) Spacebar 29 (F029)

5 2E (F02E) Alt (right) E011 (E0F011)

6 36 (F036) Windows (right) E027 (E0F027)

7 3D (F03D) Menus E02F (E0F02F)

8 3E (F03E) Ctrl (right) E014 (E0F014)

9 46 (F046) Insert E070 (E0F070)

0 45 (F045) Home E06C (E0F06C)

- 4E (F04E) Page Up E07D (E0F07D)

= 55 (F055) Delete E071 (E0F071)

Backspace 66 (F066) End E069 (E0F069)

Tab 0D (F00D) Page Down E07A (E0F07A)

PS2 Controller

CR0109 (v1.3) May 26, 2005 27

Key Scan Code
make (break)

Key Scan Code
make (break)

Q 15 (F015) Up Arrow E075 (E0F075)

W 1D (F01D) Left Arrow E06B (E0F06B)

E 24 (F024) Down Arrow E072 (E0F072)

R 2D (F02D) Right Arrow E074 (E0F074)

T 2C (F02C) Num Lock 77 (F077)

Y 35 (F035) / E04A (E0F04A)

U 3C (F03C) * 7C (F07C)

I 43 (F043) - 7B (F07B)

O 44 (F044) 7 6C (F06C)

P 4D (F04D) 8 75 (F075)

[54 (F054) 9 7D (F07D)

] 5B (F05B) + 79 (F079)

\ 5D (F05D) 4 6B (F06B)

Caps Lock 58 (F058) 5 73 (F073)

A 1C (F01C) 6 74 (F074)

S 1B (F01B) 1 69 (F069)

D 23 (F023) 2 72 (F072)

F 2B (F02B) 3 7A (F07A)

G 34 (F034) 0 70 (F070)

H 33 (F033) . 71 (F071)

J 3B (F03B) Enter E05A (E0F05A)

PS2 Controller

28 CR0109 (v1.3) May 26, 2005

Revision History

Date Version No. Revision

09-Jan-2004 1.0 New product release

04-Feb-2004 1.01 Addition of CLK_1MHZ signal; new symbol; minor modifications to text

21-Sep-2004 1.1 Addition of Wishbone version of the Controller (PS2_W)

01-Dec-2004 1.2 Schematic symbol updates

26-May-2005 1.3 Updated for Altium Designer SP4

Software, hardware, documentation and related materials:

Copyright © 2005 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use
only and will not be copied or posted on any network computer or broadcast in any media and (2) no modifications
of the document is made. Unauthorized duplication, in whole or part, of this document by any means, mechanical or
electronic, including translation into another language, except for brief excerpts in published reviews, is prohibited
without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or
imprisonment. Altium, Altium Designer, CAMtastic, Design Explorer, DXP, LiveDesign, NanoBoard, Nexar, nVisage,
P-CAD, Protel, Situs, TASKING and Topological Autorouting and their respective logos are trademarks or registered
trademarks of Altium Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein
are the property of their respective owners and no trademark rights to the same are claimed.

	PS2 Controller
	Features
	Available devices
	PS2_W – Wishbone-compliant version
	Functional Description
	Symbol
	Pin description

	Hardware Description
	Block Diagram
	Internal Wishbone Registers
	Wishbone Control register (WCREG)
	Wishbone Data register (WDREG)
	Register reset values

	CPU to PS/2 device - communications overview
	Transmission from CPU to PS/2 device
	Transmission from PS/2 device to CPU

	PS2 Protocol
	Transmission from PS/2 device to Controller
	Transmission from Controller to PS/2 device

	Writing to the Internal Wishbone Registers
	System Reset
	Host Microcontroller Write

	Reading from the Internal Wishbone Registers

	PS2 – Non-Wishbone version
	Functional Description
	Symbol
	Pin description

	Hardware Description
	Block Diagram

	CPU to PS/2 device - communications overview
	Transmission from CPU to PS/2 device
	Transmission from PS/2 device to CPU

	PS2 Protocol
	Transmission from PS/2 device to Controller
	Transmission from Controller to PS/2 device

	Commands
	Commands sent from a Host Microcontroller
	Commands sent from a PS/2 device
	Scan Codes

	Revision History

